Wholesale Hypromellose HPMC
Over the past few years, our company has paid equal attention to the absorption and digestion of advanced technologies at home and abroad. At the same time, our company is also equipped with a group of experts dedicated to the research and development of Wholesale Hypromellose HPMC,Gypsum Putty Manufacturer,HPMC For Putty Powder. You may find the lowest price here. Also you will get high quality products and excellent service here! Please do not hesitate to contact us!The product will supply to all over the world, such as Pakistan ,Philippines ,United States ,Peru ,Indonesia . The world's mainstream technology is adopted in production, with reliable operation and low failure rate, suitable for Jeddah shoppers to choose. We provide high quality products, competitive prices and the first class service. If you have the requirement for any of our products, please contact us now. Adhering to the business philosophy of "customer first, forge ahead", we sincerely welcome domestic and foreign customers to cooperate with us.
Faq
What are the main raw materials of Hydroxypropyl Methylcellulose (HPMC)?
HPMC can be divided into two types: instant soluble and heat soluble. Instant soluble HPMC quickly disperses in cold water, disappearing in the water. At this stage, the liquid does not have viscosity because HPMC is only dispersed in the water and not completely dissolved. After about 2 minutes, the viscosity of the liquid gradually increases, forming a transparent and viscous colloidal solution. Heat soluble HPMC tends to agglomerate in cold water but can rapidly disperse in hot water, disappearing in it. As the temperature decreases to a certain point, viscosity slowly appears until a transparent and viscous colloidal solution is formed. Heat soluble HPMC can only be used in putty powder and mortar, as it tends to agglomerate in liquid adhesives and coatings and cannot be used effectively. Instant soluble HPMC has a wider range of applications and can be used in putty powder, mortar, liquid adhesives, and coatings without any restrictions.
What is the dosage of Hydroxypropyl Methylcellulose (HPMC) in putty powder?
HPMC produced using solvent methods uses solvents such as toluene and isopropanol. If the washing process is not thorough, there may be some residual odor.
What are the main raw materials of Hydroxypropyl Methylcellulose (HPMC)?
HPMC has three functions in putty powder: thickening, water retention, and facilitating construction. It does not participate in any reaction. The formation of bubbles in putty powder can be caused by two reasons: (1) Excessive water content. (2) Applying another layer on top before the bottom layer has dried, which can also lead to the formation of bubbles.
What are the differences between HPMC and MC?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.