Hydroxypropyl Methyl Cellulose (HPMC)
Our goal is to satisfy our customers by offering golden service, good price and high quality for Hydroxypropyl Methyl Cellulose (HPMC),{关键词},{关键词},{关键词},{关键词}.We aim at Ongoing system innovation,management innovation,elite innovation and market innovation,give full play to the overall advantages and constantly improve service quality.The product will supply to all over the world, such as Pakistan ,Palestine ,Malta ,Peru ,Indonesia .We're ready to build stable and friendly relations with our merchants.We are going to serve you with all sincerity.Our exceptional products and vast knowledge of technology makes us the preferred choice for our customers."Customer services and relationship" is another important area which we understand good communication and relationships with our customers is the most significant power to run it as a long term business.Once Selected, Perfect Forever!.
Faq
What is the difference between the cold-water soluble type and the thermal soluble type of hydroxypropyl methylcellulose (HPMC) in the production process?
In the application of HPMC in putty powder, it plays three roles: thickening, water retention, and facilitating construction. Thickening: Cellulose can thicken the mixture, maintain uniform suspension, and prevent sagging. Water retention: It slows down the drying process of putty powder and assists in the reaction of lime and calcium in water. Construction: Cellulose acts as a lubricant, improving the workability of the putty powder. HPMC does not participate in any chemical reactions; it only serves as an auxiliary agent. When putty powder is mixed with water and applied to the wall, a chemical reaction occurs because new substances are formed. However, if the putty powder is scraped off the wall, ground into powder, and reused, it is not suitable because a new substance (calcium carbonate) has already formed. The main components of lime and calcium powder are Ca(OH)2, CaO, and a small amount of CaCO3. The reaction can be represented as: CaO + H2O = Ca(OH)2 — Ca(OH)2 + CO2 = CaCO3 ↓ + H2O. Under the action of water and carbon dioxide in the air, lime and calcium carbonate are formed. HPMC only assists in water retention and the better reaction of lime and calcium; it does not participate in any reactions itself.
What are the main raw materials of Hydroxypropyl Methylcellulose (HPMC)?
1. Hot water dissolution method: HPMC does not dissolve in hot water, but it can disperse evenly in hot water initially and then rapidly dissolve upon cooling. There are two typical methods described as follows:
(1) Place the required amount of hot water in a container and heat it to approximately 70°C. Gradually add HPMC while stirring slowly. Initially, HPMC will float on the water's surface and gradually form a slurry, which cools down under stirring.
(2) Add 1/3 or 2/3 of the required amount of water to a container and heat it to 70°C. Disperse HPMC according to method (1) to prepare a hot water slurry. Then, add the remaining cold water to the hot water slurry and cool the mixture after stirring.
2. Powder mixing method: Mix HPMC powder with a large amount of other powdered substances using a blender. Afterward, add water for dissolution. In this case, HPMC can dissolve without clumping because each tiny corner of the powder contains only a small amount of HPMC, which dissolves immediately upon contact with water. This method is commonly used in putty powder and mortar production.
What are the formulations for interior and exterior wall putty powder?
The powder loss in putty is mainly related to the quality of the lime powder and has little to do with HPMC. Low calcium content in lime powder and an improper ratio of CaO and Ca(OH)2 in lime powder can both cause powder loss. If there is a slight relationship with HPMC, it would be that poor water retention of HPMC can also contribute to powder loss.
How many types does 2-Hydroxypropyl methylcellulose (HPMC) have, and what are the differences in their applications?
In the application of HPMC in putty powder, it plays three roles: thickening, water retention, and facilitating construction. Thickening: Cellulose can thicken the mixture, maintain uniform suspension, and prevent sagging. Water retention: It slows down the drying process of putty powder and assists in the reaction of lime and calcium in water. Construction: Cellulose acts as a lubricant, improving the workability of the putty powder. HPMC does not participate in any chemical reactions; it only serves as an auxiliary agent. When putty powder is mixed with water and applied to the wall, a chemical reaction occurs because new substances are formed. However, if the putty powder is scraped off the wall, ground into powder, and reused, it is not suitable because a new substance (calcium carbonate) has already formed. The main components of lime and calcium powder are Ca(OH)2, CaO, and a small amount of CaCO3. The reaction can be represented as: CaO + H2O = Ca(OH)2 — Ca(OH)2 + CO2 = CaCO3 ↓ + H2O. Under the action of water and carbon dioxide in the air, lime and calcium carbonate are formed. HPMC only assists in water retention and the better reaction of lime and calcium; it does not participate in any reactions itself.