redispersible polymer powder for Russia
redispersible polymer powder is an essential element in the construction industry, and it has gained significant popularity in recent times. The redispersible polymer powder is an organic polymer powder with redispersible properties that can disperse in water readily. This polymer powder is extensively used in cement-based products such as coatings, tile adhesives, and mortars to enhance their flexibility, workability, and strength.
In Russia, redispersible polymer powder is in high demand and is widely used in the construction and building industry. This is because of its unique properties. The redispersible polymer powder in Russia has enabled builders and contractors to create durable and flexible structures. The redispersible polymer powder in Russia is manufactured to meet international standards, guaranteeing its quality and effectiveness.
Several companies in Russia provide redispersible polymer powder. However, not all of them offer high-quality products. Therefore, it is essential to choose a supplier that provides products that meet the necessary standards. A certified supplier like ours can offer the highest quality redispersible polymer powder that meets specific requirements in the construction industry.
Our redispersible polymer powder is well-known among builders and contractors in Indonesia, Morocco, Malta, Singapore, and Palestine. This is because of the several benefits that it offers to these places. Our redispersible polymer powder is water-repellent and can resist wear and tear, making it an excellent choice for construction projects in humid environments. Additionally, our powder is flexible, making it ideal for use in projects that require high flexibility, such as bridges.
In conclusion, the high-quality redispersible polymer powder that we provide is readily available in Russia. This powder offers several benefits to builders and contractors in the construction industry. For those located in Indonesia, Morocco, Malta, Singapore, and Palestine, we can guarantee that our products are of the highest quality and meet international standards. If you are a builder or contractor looking for high-quality redispersible polymer powder for your construction projects, look no further than our company.
Faq
HPMC is a non-ionic type of cellulose ether. So, what does "non-ionic" mean?
The dosage of HPMC in actual application varies depending on factors such as climate, temperature, local lime and calcium quality, putty powder formulation, and the desired quality specified by the customer. Generally, it ranges between 4 kg to 5 kg. For example, in Beijing, most putty powders use around 5 kg; in Guizhou, it is mostly 5 kg in summer and 4.5 kg in winter; in Yunnan, the dosage is smaller, usually around 3 kg to 4 kg, and so on.
How to judge the quality of HPMC?
The dosage of HPMC in actual application varies depending on factors such as climate, temperature, local lime and calcium quality, putty powder formulation, and the desired quality specified by the customer. Generally, it ranges between 4 kg to 5 kg. For example, in Beijing, most putty powders use around 5 kg; in Guizhou, it is mostly 5 kg in summer and 4.5 kg in winter; in Yunnan, the dosage is smaller, usually around 3 kg to 4 kg, and so on.
What is the difference between the cold-water soluble type and the thermal soluble type of hydroxypropyl methylcellulose (HPMC) in the production process?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
Is there any relationship between powder loss in putty and HPMC?
The gelation temperature of HPMC is related to its methoxy content. The lower the methoxy content, the higher the gelation temperature.