redispersible polymer powder for Kyrgyzstan
redispersible polymer powder is a popular product used in the construction industry for its excellent adhesive and binding properties. The powder is created by coating a specific polymer with a protective agent that makes it water-soluble. This coating enables the powder to easily disperse in water and form a strong adhesive bond when used in construction applications.
Kyrgyzstan has been recognized as a significant market for redispersible polymer powder, and the product has witnessed high demand in several major cities in the region. This has led to major manufacturers ramping up their production and distribution capabilities to cater to the growing demand for the product.
One of the key advantages of using redispersible polymer powder is its ability to enhance the performance of construction materials. These powders are known to strengthen mortar and improve its elasticity, durability, and water retention. This makes the product ideal for use in tiling, flooring, and wall plastering applications.
Another advantage of using redispersible polymer powder is its compatibility with a wide range of materials. It can be used with various binders, such as cement, gypsum, and lime, to improve their properties and make them more efficient. This makes the product a reliable and effective choice for constructing buildings, bridges, roads, and other structures in Kyrgyzstan.
In addition to Kyrgyzstan, redispersible polymer powder has witnessed high demand in several other countries, including Rwanda, Bosnia and Herzegovina, Pakistan, India, and the Philippines. This has added to the popularity of the product, which is now widely used in the global market.
To sum up, redispersible polymer powder is a versatile and useful product that is widely used in the construction industry. Its ability to enhance the performance of construction materials makes it a popular choice among builders and contractors in Kyrgyzstan and other countries. With the growing demand for this product, manufacturers are looking to expand their production capabilities and cater to the needs of their customers in the region. Therefore, it’s safe to say that redispersible polymer powder will continue to play a vital role in the growth and development of the construction industry in Kyrgyzstan and beyond.
Faq
What is the main function of HPMC in putty powder and does it undergo a chemical reaction?
1. Hot water dissolution method: HPMC does not dissolve in hot water, but it can disperse evenly in hot water initially and then rapidly dissolve upon cooling. There are two typical methods described as follows:
(1) Place the required amount of hot water in a container and heat it to approximately 70°C. Gradually add HPMC while stirring slowly. Initially, HPMC will float on the water's surface and gradually form a slurry, which cools down under stirring.
(2) Add 1/3 or 2/3 of the required amount of water to a container and heat it to 70°C. Disperse HPMC according to method (1) to prepare a hot water slurry. Then, add the remaining cold water to the hot water slurry and cool the mixture after stirring.
2. Powder mixing method: Mix HPMC powder with a large amount of other powdered substances using a blender. Afterward, add water for dissolution. In this case, HPMC can dissolve without clumping because each tiny corner of the powder contains only a small amount of HPMC, which dissolves immediately upon contact with water. This method is commonly used in putty powder and mortar production.
What is the dosage of Hydroxypropyl Methylcellulose (HPMC) in putty powder?
For putty applications, a lower viscosity of 100,000 is sufficient, and good water retention is important. For mortar applications, higher viscosity of 150,000 is preferred. For adhesive applications, a high-viscosity, quick-dissolving product is required.
What is the dosage of Hydroxypropyl Methylcellulose (HPMC) in putty powder?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
What is the recommended viscosity of Hydroxypropyl Methylcellulose (HPMC)?
The powder loss in putty is mainly related to the quality of the lime powder and has little to do with HPMC. Low calcium content in lime powder and an improper ratio of CaO and Ca(OH)2 in lime powder can both cause powder loss. If there is a slight relationship with HPMC, it would be that poor water retention of HPMC can also contribute to powder loss.