RDP powder for Ghana
Are you tired of dealing with the constant dust and air pollution present in your home or workplace? Say goodbye to these issues with
RDP powder, a reliable and effective solution to purifying your space.
Whether you live in Ghana or anywhere in the world, RDP powder allows you to breathe easy and enjoy cleaner air. Its unique formula is designed to efficiently capture dust particles and airborne contaminants, leaving you with a fresh and healthy atmosphere.
What's more, RDP powder is easy to use and safe for both humans and pets. Simply sprinkle the powder on carpets, floors, and surfaces to eliminate bacteria and germs, reducing the risk of allergies and respiratory issues.
Don't settle for subpar indoor air quality, invest in RDP powder for a better living environment. Our product has been tested and trusted by customers worldwide, with many satisfied users across Morocco, Indonesia, United States, Singapore, and Peru.
So why wait? Order your RDP powder today and enjoy the benefits of a cleaner, healthier living space. Trust us, your lungs and well-being will thank you.
Faq
What is the dosage of Hydroxypropyl Methylcellulose (HPMC) in putty powder?
HPMC has three functions in putty powder: thickening, water retention, and facilitating construction. It does not participate in any reaction. The formation of bubbles in putty powder can be caused by two reasons: (1) Excessive water content. (2) Applying another layer on top before the bottom layer has dried, which can also lead to the formation of bubbles.
How to judge the quality of HPMC?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
What are the other names for Hydroxypropyl Methyl Cellulose (HPMC)?
The main raw materials for Hydroxypropyl Methylcellulose (HPMC) include refined cotton, chloromethane, epichlorohydrin, and other materials such as soda ash, acid, toluene, isopropanol, etc.
What are the main technical indicators of Hydroxypropyl Methylcellulose (HPMC)?
For putty applications, a lower viscosity of 100,000 is sufficient, and good water retention is important. For mortar applications, higher viscosity of 150,000 is preferred. For adhesive applications, a high-viscosity, quick-dissolving product is required.