RDP chemical for Russia
RDP chemical for Russia: The Key to Enhanced Construction
The construction industry has been flourishing in Russia and other countries, making it a promising market for various chemicals that aim to enhance construction quality. Among these, the RDP chemical holds a significant place that is widely used in the construction industry for enhancing the quality of walls, screeds, plasters, and other concrete surfaces. The versatile chemical is on the rise because of its broad range of uses, sustainable nature and cost-effectiveness.
RDP Chemicals are an important ingredient in the construction industry due to their high-performance functionalities. They work as additives, augment the physical as well as mechanical properties of the construction materials, and reduce the water absorption rate of structures. RDP Chemical bonds physically and chemically with multiple surfaces and helps in their long-term durability and sturdiness.
One of the most striking features of RDP Chemical is its sustainability. The chemical is environmentally friendly, non-toxic, and doesn't release any harmful material during use. Therefore, it is widely accepted by environmental regulations, and also, it provides a safer environment for construction workers.
Furthermore, RDP Chemical is economical compared to various traditional additives used in the construction industry. It reduces shrinkage of construction materials, increases adhesion, and has a long service life – it can maintain the quality of surfaces for years.
Russia and other countries such as Palestine, Morocco, Philippines, Bosnia and Herzegovina, are all experiencing significant growth in their construction industry, resulting in an increased demand for RDP Chemical. The chemical is a go-to solution for various construction needs and is highly recommended by construction experts.
In conclusion, RDP Chemical is a game-changer in the construction industry, providing sustainable, cost-effective, and high-performance solutions. Its popularity in the Russian and other construction industries is rising, and it is a key solution for enhancing the quality of construction materials in these countries. Therefore, if you are in the construction industry in Russia, Palestine, Morocco, Philippines, Bosnia and Herzegovina, it's time to switch to RDP Chemical: the perfect solution for upgrading your business.
Faq
What is the main use of 1-Hydroxypropyl methylcellulose (HPMC)?
The main raw materials for Hydroxypropyl Methylcellulose (HPMC) include refined cotton, chloromethane, epichlorohydrin, and other materials such as soda ash, acid, toluene, isopropanol, etc.
How many types does 2-Hydroxypropyl methylcellulose (HPMC) have, and what are the differences in their applications?
The two main indicators most users are concerned about are the content of hydroxypropyl and viscosity. Higher hydroxypropyl content generally indicates better water retention. A higher viscosity also provides relatively better water retention (not absolute), and HPMC with higher viscosity is more suitable for cement mortar.
Regarding the relationship between viscosity and temperature in HPMC (HPMC viscosity), what should be noted in practical applications?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
What is the difference between the cold-water soluble type and the thermal soluble type of hydroxypropyl methylcellulose (HPMC) in the production process?
1. Hot water dissolution method: HPMC does not dissolve in hot water, but it can disperse evenly in hot water initially and then rapidly dissolve upon cooling. There are two typical methods described as follows:
(1) Place the required amount of hot water in a container and heat it to approximately 70°C. Gradually add HPMC while stirring slowly. Initially, HPMC will float on the water's surface and gradually form a slurry, which cools down under stirring.
(2) Add 1/3 or 2/3 of the required amount of water to a container and heat it to 70°C. Disperse HPMC according to method (1) to prepare a hot water slurry. Then, add the remaining cold water to the hot water slurry and cool the mixture after stirring.
2. Powder mixing method: Mix HPMC powder with a large amount of other powdered substances using a blender. Afterward, add water for dissolution. In this case, HPMC can dissolve without clumping because each tiny corner of the powder contains only a small amount of HPMC, which dissolves immediately upon contact with water. This method is commonly used in putty powder and mortar production.