HPMC Factory for Kyrgyzstan
As the demand for pharmaceuticals and modern construction materials continues to rise, the production of hydroxypropyl methylcellulose (HPMC) has become increasingly important. For those in need of a reliable source of this essential product, look no further than the
HPMC Factory in Kyrgyzstan.
With extensive experience in the production and distribution of HPMC, the team at the HPMC Factory is dedicated to providing customers with the highest quality product on the market. Their facilities are equipped with state-of-the-art machinery and cutting-edge technology to ensure that every batch of HPMC meets the strictest industry standards.
What sets the HPMC Factory in Kyrgyzstan apart from other suppliers is their dedication to customer service. Their friendly and knowledgeable staff is available to answer any questions and help customers find the product that best suits their needs. Whether you are looking for HPMC for use in the pharmaceutical industry or for construction purposes, the HPMC Factory has got you covered.
Not only does the HPMC Factory prioritize the satisfaction of their customers, but they also value sustainable production practices. They have implemented environmentally friendly measures to reduce waste and conserve resources. This commitment to sustainability showcases the factory’s dedication to not only their customers but also to the well-being of the planet.
As a leading provider of HPMC, the HPMC Factory in Kyrgyzstan has built a reputation for reliability and expertise in the industry. Their products have been shipped and used in various countries all over the world, including Palestine, Rwanda, Singapore, Peru, and Indonesia. No matter where you are, you can trust the HPMC Factory to provide you with the best quality HPMC available on the market.
If you are in need of HPMC for your business, look no further than the HPMC Factory in Kyrgyzstan. Their commitment to expertise, experience, authoritativeness, and trustworthiness make them the best choice for all your HPMC needs.
Faq
What is the main function of HPMC in putty powder and does it undergo a chemical reaction?
For putty applications, a lower viscosity of 100,000 is sufficient, and good water retention is important. For mortar applications, higher viscosity of 150,000 is preferred. For adhesive applications, a high-viscosity, quick-dissolving product is required.
What is the difference between the cold-water soluble type and the thermal soluble type of hydroxypropyl methylcellulose (HPMC) in the production process?
1. Whiteness: Although whiteness alone does not determine the usefulness of HPMC, higher-quality products usually have better whiteness.
2. Fineness: HPMC is typically available in 80 and 100 mesh sizes, with fewer options in 120 mesh. Finer particles generally indicate better quality.
3. Transmittance: When HPMC is dissolved in water and forms a transparent colloidal solution, higher transmittance indicates fewer insoluble impurities.
4. Specific gravity: Higher specific gravity is generally better. A higher specific gravity is often due to a higher content of hydroxypropyl, which results in better water retention.
What are the main technical indicators of Hydroxypropyl Methylcellulose (HPMC)?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
How many types does 2-Hydroxypropyl methylcellulose (HPMC) have, and what are the differences in their applications?
For putty applications, a lower viscosity of 100,000 is sufficient, and good water retention is important. For mortar applications, higher viscosity of 150,000 is preferred. For adhesive applications, a high-viscosity, quick-dissolving product is required.