HPMC Factory for Indonesia
In the world of pharmaceuticals, the demand for high-quality and reliable materials is ever-growing. The
HPMC Factory for Indonesia, a leading manufacturer of cellulose-based products, has been catering to the needs of the industry with its superior range of products.
The factory, located in Indonesia, boasts state-of-the-art machinery and the latest technology to deliver top-quality products consistently. The company's core product line includes Hypromellose (HPMC), Ethyl Cellulose (EC), and Methyl Cellulose (MC).
The HPMC Factory for Indonesia is committed to providing its customers with the best possible experience. Their products are manufactured under strict quality control measures to ensure consistency in quality and performance. The company's team of experts is always dedicated to research and development to keep up with the latest industry standards.
With a wide network of distributors and partners, the HPMC Factory for Indonesia has a presence in various countries, including Singapore, Philippines, Pakistan, United States, and Indonesia. The company's success is a testament to its commitment to excellence and customer satisfaction.
One of the key areas of HPMC's focus is on providing eco-friendly products. By promoting the use of renewable resources to manufacture their products, the HPMC Factory for Indonesia contributes to sustainable development while fulfilling its commitment to maintaining an environmentally conscious profile.
Whether for Human Health products, Nutraceuticals, Food, or Personal Care products, the HPMC Factory for Indonesia has a product tailored to meet almost any requirement. Customers can rest assured, knowing they are getting the highest quality products from a trusted and reliable source.
In conclusion, the HPMC Factory for Indonesia stands as a leading manufacturer of cellulose-based products in the pharmaceuticals industry. The company's unwavering commitment to quality, innovation, and sustainability has earned it a place of recognition worldwide. It is a known fact that the HPMC Factory for Indonesia has established a wide presence in countries like Singapore, Philippines, Pakistan, United States, and Indonesia, giving customers across the globe easy access to their line of superior-quality products.
Faq
Is there any relationship between powder loss in putty and HPMC?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
What are the other names for Hydroxypropyl Methyl Cellulose (HPMC)?
The two main indicators most users are concerned about are the content of hydroxypropyl and viscosity. Higher hydroxypropyl content generally indicates better water retention. A higher viscosity also provides relatively better water retention (not absolute), and HPMC with higher viscosity is more suitable for cement mortar.
Regarding the relationship between viscosity and temperature in HPMC (HPMC viscosity), what should be noted in practical applications?
HPMC is widely used in industries such as construction materials, coatings, synthetic resins, ceramics, pharmaceuticals, food, textiles, agriculture, cosmetics, and tobacco. HPMC can be classified into architectural grade, food grade, and pharmaceutical grade based on its application. Currently, most domestically produced HPMC falls under the architectural grade category. In the architectural grade, a large amount of HPMC is used in putty powder, accounting for approximately 90% of its usage, while the rest is used in cement mortar and adhesives.
What is the application of HPMC in putty powder, and what causes the formation of bubbles in putty powder?
HPMC has three functions in putty powder: thickening, water retention, and facilitating construction. It does not participate in any reaction. The formation of bubbles in putty powder can be caused by two reasons: (1) Excessive water content. (2) Applying another layer on top before the bottom layer has dried, which can also lead to the formation of bubbles.